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Abstract
Purpose The aim of this feasibility study was to use slice selective learning using a Generative Adversarial Network for external
validation. We aimed to build a model less sensitive to PET imaging acquisition environment, since differences in environments
negatively influence network performance. To investigate the slice performance, each slice evaluation was performed.
Methods We trained our model using a 18F-fluorodeoxyglucose ([18F]FDG) PET/CT dataset obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database and tested the model with a Severance Hospital dataset. We applied slice
selective learning to reduce computational cost and to extract unbiased features. We extracted features of Alzheimer’s disease
(AD) and normal cognitive (NC) condition using a Boundary Equilibrium Generative Adversarial Network (BEGAN) for stable
convergence. Then, we utilized these features to train a support vector machine (SVM) classifier to distinguish AD from NC.
Results The slice range that covered the posterior cingulate cortex (PCC) using double slices showed the best performance. The
accuracy, sensitivity, and specificity of our proposed network was 94.33%, 91.78%, and 97.06% using the Severance dataset and
94.82%, 92.11%, and 97.45% using the ADNI dataset. The performance on the two independent datasets showed no statistical
difference (p > 0.05). Moreover, there was a statistical difference in the performance between using two slices and one slice as
input (p < 0.05).
Conclusions Our model learned the generalized features of AD and NC for external validation when appropriate slices were
selected. This study showed the feasibility of this model with consistent performance when tested using datasets acquired from a
variety of image-acquisition environments.
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Introduction

Alzheimer’s disease (AD) is a degenerative brain disorder
characterized by a decline in cognitive function. It mostly
affects older people (> 65 years), so that the prevalence of
AD has been sharply increasing with the rapid growth of the
elderly proportion. Although it is currently difficult to cure
AD, especially in advanced cases, early diagnosis of AD be-
fore the symptoms become severe would provide windows for
effective treatment [1]. For the clinical diagnosis of AD, 18F-
fluorodeoxyglucose ([18F]FDG) positron emission
tomography/computed tomography (PET/CT) is one of the
most useful modalities. The imaging method called FDG
PET/CT allows visualization of the glucose metabolism in
the brain with high sensitivity and specificity over the course
of diseases. It has been reported that there is reduction of
glucose metabolism in the temporal, parietal, and posterior
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cingulate cortex (PCC) regions in patients with AD. The mea-
surement of changes in the glucose metabolism help diagnose
AD before the appearance of symptoms [2].

Recently, there have been a number of studies in which
deep learning was applied in imaging analysis [3]. Deep neu-
ral networks, one of the machine learningmethods, are used to
solve problems in the field of recent image recognition that
have not been solvable using conventional machine learning
algorithms. Krizhevsky et al. showed an error rate of 15.3% in
the ImageNet Large Scale Visual Recognition Competition
(ILSVRC) 2012, which is lower than the 26.2% rate of a
conventional machine learning method [4].

Deep learning methods have been studied in the medical
imaging field for the classification of AD. Studies of AD clas-
sification using deep learning models include those using
autoencoders [5, 6]. Liu et al. [5] applied several autoencoders
with multi-layered neural network to combine multimodal
features for AD classification. Suk et al. [6] designed stacked
autoencoders to extract high-level features of multimodal
ROI, and an SVM classifier was used to combine and classify
AD. Moreover, CNN methods were applied to capture spatial
features from PET or MRI scans [7, 8]. Glozman et al. [7]
chose center slices of axial, coronal, and sagittal scans and
applied 2D CNN to these. Then, the features from different
views were concatenated and used for AD classification.
Farooq et al. [8] used skull stripping and gray matter segmen-
tation using MRI volume data. The slices were used as CNN
model input where gray matter information existed.
Moreover, 3D CNN was applied to take full advantage of
3D volume data [9, 10]. Hosseini et al. [9] applied 3D CNN
to capture anatomical variations related to AD, such as hippo-
campus volume and brain volume. Liu et al. [10] used the
entire PET volume to encode spatial volume features using
3D CNN.

Although previous studies have shown effective AD
classification methods, limitations remained. Medical
images are affected by the image acquisition environ-
ment. For example, the partial volume effect (PVE) de-
pends on the imaging acquisition system [11]. Specific
areas are blurred in different resolution for each dataset.
Thus, performance may be reduced, which leads to poor
clinical utility. In addition, input slices from volume
data need to be carefully chosen, since the performance
differs on each slice. However, Glozman et al. [7] ex-
tracted center slices of the volume data. Farooq et al.
[8] excluded slices that did not have gray matter infor-
mation. Hence, the specific standards for selecting slices
need to be set.

Therefore, this paper is to propose a model that applied
slice selective learning using a BEGAN-based model to solve
the above limitations. We trained our model with an ADNI
dataset, then performed external validation with our
Severance hospital dataset.

Methods

Dataset

For training and validation, we used [18F] FDG PET/CT data
selected from the AD Neuroimaging Initiative (ADNI) data-
base. The ADNI open database for the diagnosis of AD con-
tains medical imaging data such as MRI and PET, as well as
biochemical biomarkers and other data. The ADNI dataset
included data from 139 patients with AD and 347 NC partic-
ipants. A dose of [18F] FDG (185 MBq; 5 mCi) was injected
into subjects. ADNI [18F] FDG PET/CT images of six 5-min
frames were obtained 30 to 60 min after the injection. The
[18F] FDG PET/CT images were reoriented into standardized
voxels (1.5 × 1.5 × 1.5 mm).

For testing, we obtained an institutional dataset from the
Nuclear Medicine Department of Severance Hospital (Seoul,
South Korea). The Severance data were from 73 patients with
AD and 68 NC participants. This [18F] FDG PET/CT data
collection was approved by the Institutional Review Board
(4–2018-1010). All [18F] FDG PET/CT images were acquired
using a Discovery 600 (GE Medical Systems, Milwaukee,
WI) PET/CT. Approximately 4.1 MBq of [18F] FDG per ki-
logram of body weight was administered intravenously to the
patients. Forty minutes after [18F] FDG injection, PET images
were acquired for 15 min. Spiral CT scans were performed for
attenuation correction with 0.8 s rotation time, 60 mA, 120
kVp, 3.75 mm section thickness, 0.625 mm collimation, and
9.375 mm table feed per rotation.We reconstructed [18F] FDG
PET/CT images using the ordered subset expectation maximi-
zation algorithm (4 iterations and 32 subsets). The demo-
graphics of the ADNI dataset and Severance dataset are shown
in Table 1.

Preprocessing

We processed the raw [18F] FDG PET/CT scans using the
method described by Jagust et al. [12]. Each [18F] FDG PET
scan was co-registered to the first frame of the raw [18F] FDG
PET/CT scan to reduce the effects of subject motion. We gen-
erated a single PETscan by averaging six dynamic frames and
then reoriented the co-registered and averaged scan into a
standard voxel image grid with 1.5 mm3 voxels.

Next, we normalized the voxel intensity of the processed
[18F] FDG PET scans using an iterative method previously
described. For the first iteration, the entire image was scaled
to a mean intensity value of 1.0. Successive iterations masked
voxels with intensity values lower than 0.5. We rescaled the
remaining voxels to a mean of 1.0. The voxel intensity of the
[18F] FDG PETwas normalized by repeating this process until
the number of remaining voxels became constant.

After intensity normalization, each [18F] FDG PET scan
displayed the difference between a subject’s brain size and
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shape. We used a spatial normalization method based on the
MNI-152 template [13]. Thus, the same brain regions ap-
peared in the same position in all the patients’ brain scans.

Slice selection

Due to insufficient data to train the model using 3D [18F] FDG
PET volume data, we reduced computational cost by using
slice-selective learning. To extract regularized features for
AD classification, we trained our model within the range from
the amygdala to the end of the PCC. We chose this slice range
because it covers places where the neuropathological or ana-
tomical changes are known to take place in AD (e.g., the
posterior cingulate cortex, hippocampus, and entorhinal cor-
tex) [14–16]. Each coronal 2D slice was 1.5 mm thick, and we
extracted at 3-slice intervals (4.5 mm) from the [18F] FDG
PET/CT datasets. Each slice was numbered from the back of
the head. Generally, coronal slices were cut at 5–7.5 mm for
metastases, infarcts, etc. in brain autopsy [17]. Our network
was trained with two coronal slices for additional volume
information.

Boundary equilibrium adversarial network

Goodfellow et al. [18] proposed Generative Adversarial
Networks (GAN) containing generative and discriminative
networks in which the adversarial training process of two net-
works could improve the performance of both networks. The
generator synthesizes a fake image G(z), which is difficult for
the discriminator to handle. At the same time, the discrimina-
tor is trained to distinguish whether the provided image is real
or fake. However, in the original GAN, the training process is
unstable because of the imbalance between the discriminator
and the generator. Therefore, we applied the Boundary
Equilibrium Generative Adversarial Network (BEGAN)
structure to our network as proposed by Berthelot et al. [19].
The BEGAN architecture maintains equilibrium between the
discriminator and generator.

Our model is a hybrid model of BEGAN with an added
condition term proposed by Mirza et al. [20]. For the

generator, we added a condition term to generate a corre-
sponding image. We used one-hot vectors as labels of AD
and NC. The discriminator was an autoencoder with a loss
function derived from the Wasserstein distance. Unlike the
discriminator of the original GAN, the discriminator was
trained to maximize the Wasserstein distance between the real
and fake image reconstruction loss, not the data distribution,
whereas the generator was trained to minimize the distance.
The reconstruction loss is defined as:

L xð Þ ¼ x−D xð Þj j ð1Þ

In the training process, the discriminator extracts features
from real AD and NC. We utilized this latent feature vector in
the bottleneck layer for AD classification. The objective func-
tion is defined as:

LD ¼ x−D xð Þj j−kt x−G zjyð Þj j
LG ¼ L G zjyð Þð Þ

ktþ1 ¼ kt þ λk γL xð Þ−L G zjyð Þð Þð Þ

8
<

:
ð2Þ

where x is a real input image, z is the noise input vector, and y
is a label of AD or NC. Here, kt ∈ [0, 1] is a control parameter
that maintains the equilibrium. The initial value is set to zero
and updated as below. The term λk is the learning rate and is
updated at each training step. The diversity ratio parameter
γ ∈ [0, 1] controls the tradeoff between image diversity and
image quality. If γ gets low, the discriminator focuses more
on reducing the reconstruction loss of the real image, which
leads to higher quality of generated image with less diversity.

For convergence measurement, we derived a formula that
determines whether the model has converged or diverged
without visual inspection.

Mglobal ¼ L xð Þ þ γ L xð Þ−L
�
G zjyð Þ

�
�
�

�
�
� ð3Þ

Network architecture

Our goal was to design a generalized enhanced model that
could classify AD and NC with a variety of [18F] FDG PET/
CT institutional datasets. We propose a two-stage deep

Table 1 Demographic
information of ADNI dataset and
Severance dataset

ADNI Severance

AD NC AD NC

Number of patients 139 347 73 68

Gender(F/M) 91 F/48 M 175 F/172 M 44 F/29 M 38 F/30 M

Age 76.04 ± 7.86 76.31 ± 6.43 70.75 ± 9.51 63.54 ± 9.14

MMSE 27.06 ± 1.79 28.95 ± 1.43 21.67 ± 4.48 29.26 ± 0.99

CDR 0.47 ± 0.12 0.01 ± 0.06 0.72 ± 0.38 0.06 ± 0.16

Data are mean ± SD, AD Alzheimer’s disease, NC normal control, SD standard deviation, MMSE mini-mental
state examination, CDR clinical dementia rating

Eur J Nucl Med Mol Imaging



learning process, trained it using GAN, and then used the
extracted features for AD classification using a fully connect-
ed layer and a support vector machine (SVM). The overview
of our model is illustrated in Fig. 1.

The proposed network architecture for the generator and
discriminator is shown in Fig. 2. The first stage was to train the

GAN model. The generator G : ℝNz→ℝNx was designed to
generate a fake image of 128 × 128. In the generator, noise
vector z was randomly sampled from 64 dimensions of ran-
dom uniform distribution z ∈ [−1, 1]. A condition term en-
abled our model to produce AD and NC [18F] FDG PET
images. We used a 3 × 3 convolution process using exponen-
tial linear units (ELU). The generator maintains the number of
filters as 128. The discriminator is the structure of the
autoencoder. The encoder linearly increases the number of
channels from 128 to 640, and the decoder uses the same
architecture of the generator. We used the nearest neighbor
interpolation method in 2×2 upsampling and applied 2×2
downsampling.

The second step was to train a classifier that consisted of
one fully connected layer and SVM. Because the features

from the discriminator were suitable for distinguishing AD
and NC, the same features were used to train the classifier to
classify AD and NC. We used the fully connected layer to
reduce the feature dimensions from 81,920 to 1024. The
encoded features were classified with the SVM using a linear
kernel.

Statistical test

We compared our results using Pearson’s chi-square test to
show similarity in performance between the two different
dataset results. P values were calculated for the slice range
examined. All p values < 0.05 were considered statistically
significant. Moreover, we compared the performance of our
model one-slice input and two-slice input. We further validat-
ed our model with single slice, double slice, quadruple slice,
and 3D volume data. We also compared the performance of
our method with other AD classification methods. We used a
receiver operating characteristic (ROC) curve to calculate the
area under the curve (AUC) for performance comparison,

Fig. 1 Overview illustration of proposed network architecture of the generator and discriminator
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based on DeLong et al. [21]. All statistics were done using
Medcalc and the Analyse-it software program.

Results

Training conditional boundary equilibrium GAN

The network was implemented and trained using a
TensorFlow framework. We trained the network using an
Adam optimizer with initial learning rate of 10−5 and decay
factor of 0.95 for each epoch. We set a batch size of 16, and
training epochs of 200, and a diversity ratio parameter of 0.7.
The diversity ratio parameter was related to the variability of
the fake image synthesized by the generator.

In addition, we confirmed the degree of convergence while
training.We used the convergence measure (Mglobal) proposed
by Berthelot et al. [19]. We measured the Mglobal convergence
value at each training iteration of the proposed network. We
observed that the generated images became similar to the ac-
tual training data as the Mglobal value decreased. The synthetic
data generated by the generator during the training process are
shown in Fig. 3. The final ADNI data and the synthesized
coronal data are shown in Fig. 4.

Performance evaluation of the classification

In the process of training the proposed network, the discrim-
inator was trained to extract appropriate features to distinguish
AD patients from NC subjects. In addition, we trained a clas-
sifier that consisted of a fully connected network and an SVM
based on the features extracted from the discriminator. We
compared accuracy, sensitivity, and specificity to measure
the performance.

The single-slice performance is illustrated in Table 2 (a).
The highest performance was for 48 slice with 92.20%,
89.04%, and 95.59% for the Severance dataset, and 92.23%,
90.13%, and 94.27% for the ADNI dataset, for accuracy, sen-
sitivity, and specificity, respectively. The AUC values were
0.96 and 0.97 for the Severance and ADNI datasets. The
double-slice performance is shown in Table 2 (b). In a slice
45,48 pair, classification accuracy, sensitivity, and specificity
were 94.33%, 91.78%, and 97.06%, respectively, for
Severance data, and 94.82%, 92.11%, and 97.45% for the
ADNI dataset. The p values for single-slice performance com-
parison between Severance hospital and ADNI dataset showed
no significant statistical difference for the range from 30 to 69
slices. The p values for double-slice model performance com-
parison between the Severance hospital and ADNI datasets did
not show a statistical difference from 30 to 69 slices.

Fig. 2 Proposed network architecture for the generator and discriminator

Fig. 3 Synthesized image and convergence parameter according to training iteration of proposed network
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We used the AUC diagnostic test to compare the perfor-
mance using single-slice and double-slice inputs. The best
performance was shown with double slice of 45 and 48 in
both datasets. Using double slice of 45 and 48 as input showed

the highest AUC value (0.98) for both datasets. To verify the
performance, we used the ROC diagnostic test to determine if
there was a statistically significant difference using single-
slice or double-slice inputs. Table 3 refers to the ROC

Fig. 4 Fake coronal data synthesized by the generator according to gamma parameter and the ADNI data used to train the generative adversarial network

Table 2 Alzheimer’s disease
classification performance (a)
using a single slice and (b) double
slices

Slice number ACC % SEN % SPE % AUC p value

Sev ADNI Sev ADNI Sev ADNI Sev ADNI

(a)

30 82.98 85.11 80.82 88.82 85.29 81.53 0.91 0.91 0.42

33 84.40 87.38 78.08 85.53 91.18 89.17 0.90 0.94 0.57

36 85.82 86.73 82.19 83.55 89.71 89.81 0.90 0.95 0.81

39 87.23 88.67 80.82 84.21 94.12 92.99 0.93 0.95 0.95

42 87.23 84.79 86.30 94.08 88.24 75.80 0.92 0.94 0.10

45 88.65 91.59 87.67 90.13 89.71 92.99 0.95 0.97 0.63

48 92.20 92.23 89.04 90.13 95.59 94.27 0.96 0.97 0.85

51 90.07 90.61 91.78 92.11 88.24 89.17 0.95 0.95 0.64

54 75.89 73.46 57.53 58.55 95.59 87.90 0.93 0.84 0.53

57 85.82 86.73 82.19 84.21 89.71 89.17 0.94 0.94 0.91

60 70.21 76.05 43.84 55.92 98.53 95.54 0.92 0.85 0.16

63 85.11 85.44 87.67 92.76 82.35 78.34 0.93 0.92 0.59

66 82.27 83.17 68.49 76.97 97.06 89.17 0.94 0.92 0.20

69 78.01 85.44 76.71 88.82 79.41 82.17 0.86 0.92 0.54

72 73.05 75.40 82.19 51.97 63.24 98.09 0.81 0.91 p < 0.0001

(b)

30, 33 82.98 89.97 80.82 92.11 85.29 87.90 0.89 0.96 0.62

33, 36 84.40 91.59 84.93 96.71 83.82 86.62 0.89 0.98 0.61

36, 39 86.52 89.00 75.34 80.92 98.53 96.82 0.91 0.98 0.06

39, 42 86.52 89.64 83.56 94.74 89.71 84.71 0.91 0.97 0.23

42, 45 88.65 91.26 87.67 96.05 89.71 86.62 0.94 0.97 0.47

45, 48 94.33 94.82 91.78 92.11 97.06 97.45 0.98 0.98 0.65

48, 51 93.62 94.17 90.41 93.42 97.06 94.90 0.96 0.98 0.95

51, 54 92.20 89.00 89.04 84.21 95.59 93.63 0.96 0.95 0.48

54, 57 87.23 85.44 84.93 79.61 89.71 91.08 0.95 0.92 0.30

57, 60 87.23 84.79 90.41 87.50 83.82 82.17 0.94 0.92 0.62

60, 63 85.11 86.41 82.19 86.18 88.24 86.62 0.91 0.93 0.85

63, 66 86.52 86.41 78.08 86.18 95.59 86.62 0.93 0.92 0.19

66, 69 84.40 84.47 78.08 84.87 91.18 84.08 0.90 0.92 0.31

69, 72 80.85 82.20 84.93 67.11 76.47 96.82 0.88 0.93 p < 0.0001

ACC accuracy, SEN sensitivity, SPE specificity, AUC area under the curve, Sev Severance hospital dataset
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diagnostic test results for the ADNI and Severance hospital
datasets, respectively. We found that there were statistical dif-
ferences using double slice 45,48 when compared to adjacent
slices 42 to 51 in both datasets, whereas double slice 42,45
showed no statistical difference in single slice in both datasets.
Supplementary Fig.1 illustrate the ROC curve of comparing
double slice 45,48 for the ADNI and Severance hospital
datasets.

To compare the proposed model with other AD classifica-
tion models, the model in Glozman et al. [7] was used. Table 4
shows the performance of the proposed model and other AD
classification models. The p value was calculated using the
chi-square test to compare the generalization ability of the
other AD classification models. The other AD classification
models listed in Table 4 did not show generalization ability.
The performance of the ADNI and Severance datasets signif-
icantly differed (p < 0.05). As shown in Table 5, ROC statis-
tical methods were used to show those differences in perfor-
mance. The results demonstrated that the proposed method
was significantly higher than other AD classification methods

in performance. Moreover, similar to the findings with our
method, double slice showed better performance than single
slice in other AD classification methods. Therefore, the pro-
posed model is not only generalized in the Severance model
but also has high performance when compared to other AD
classification models. Supplementary Fig.2 illustrates the
ROC curve of comparison of our methods and other AD clas-
sification models.

To compare performance depending on the number of input
slices, we used single slices, quadruple slices, and 3D volumes as
input data. The best performance of single slice is in Table 2 (a).
Quadruple slice or 3D volume data was selected around slice
45,48. The ROC diagnostic test statistical method was used to
see if there were significant differences in number of input slices.
Table 6 shows the result depending on the number of inputs. In
the Severance data, the double slice model showed the best per-
formance with significant differences with other models. In the
ADNI data, 3D volume data showed the highest performance,
but there were no significant differences compared to the double
slice model. We considered this result as model overfitting to the

Table 3 ROC diagnostic test with
single slice and double slice using
ADNI dataset and Severance
dataset

Dataset Slice number Difference between
areas (Standard error)

95% Confidence interval p value

ADNI 42, 45 42 0.0350 (0.0093) 0.0167 to 0.0532 0.0002 (p < 0.05)

45 0.0073 (0.0075) − 0.00732 to 0.0220 0.3259

48 0.0022 (0.0084) − 0.0143 to 0.0188 0.7868

51 0.0237 (0.0101) 0.00400 to 0.0434 0.0184 (p < 0.05)

45, 48 42 0.0433 (0.0114) 0.0210 to 0.0657 0.0001(p < 0.05)

45 0.0157 (0.0077) 0.000675 to 0.0308 0.0406 (p < 0.05)

48 0.0107 (0.0053) 0.000337 to 0.0210 0.043 (p < 0.05)

51 0.0321 (0.0106) 0.0113 to 0.0529 0.0025 (p < 0.05)

Severance 42,45 42 0.015 (0.0138) − 0.0192 to 0.0504 0.0281

45 0.0156 (0.0177) − 0.0164 to 0.0633 0.3790

48 0.0235 (0.0203) − 0.0395 to 0.0538 0.2481

51 0.0071 (0.0238) 0.0188 to 0.0944 0.7638

45,48 42 0.0566 (0.193) 0.0188 to 0.0944 0.0033 (p < 0.05)

45 0.026 (0.0112) 0.00396 to 0.0480 0.0208 (p < 0.05)

48 0.0181 (0.009) 0.00138 to 0.0349 0.0338 (p < 0.05)

51 0.0344 (0.0167) 0.00173 to 0.0672 0.0391 (p < 0.05)

Table 4 Alzheimer’s disease classification performance using our methods and other AD classification models

Model Slice number ACC % SEN % SPE % AUC p value

Sev ADNI Sev ADNI Sev ADNI Sev ADNI

Our method 45,48 94.33 94.82 92.11 91.78 97.45 97.06 0.98 0.98 0.623

Glozman et al. [7] 45 74.47 75.73 95.59 67.76 54.79 83.44 0.884 0.844 0.018

48 73.76 79.61 56.16 77.63 92.65 81.53 0.874 0.854 0.001

45,48 81.56 83.5 85.29 75.8 78.08 91.45 0.898 0.927 0.013

ACC accuracy, SEN sensitivity, SPE specificity, AUC area under the curve, Sev Severance hospital dataset
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ADNI dataset. The difference in properties of the datasets led to
lower performance in the Severance dataset.

Discussion

In this study, we proposed a GAN-based method to classify
AD and NC from [18F] FDG PET/CT images for external
validation based on a training dataset using the ADNI open
database. Because there were no previous studies regarding
external validation for AD classification, we used our model
to learn generalized features from preprocessed ADNI data.
Our model creation was a two-stage process, training GAN
using slice selective learning for feature extraction and an
SVM classifier for AD classification. The method applied is
practical when using a limited number of [18F] FDG PET/CT
images for training a deep learning model.

Generally, deep learning models require a large amount of
data for training. However, it is difficult to collect such large
amounts of [18F] FDG PET/CT images taken for diagnosis of
AD and NC at individual hospitals. In addition, it is widely
known that privacy, healthcare industry standards, and incom-
plete integration of medical information systems (and related
issues) make medical datasets difficult to collect compared to
general image data. More importantly, [18F] FDG PET/CT
images show different properties depending on various acqui-
sition instruments, collection environment, acquisition proto-
cols, and reconstruction methods, which hamper use of the
network [22]. Therefore, the model performance of external

validation shows lower performance compared to the training
dataset.

To overcome these challenges, we designed our model with
enhanced regularized performance. We set a range that cov-
ered the most important AD-related regions and searched for
the most appropriate slices for classification. Two-
dimensional sectional images extracted from 3DPET volumes
were used. Applying slice-selective learning reduced the num-
ber of training parameters and helped for training our model
with unbiased features. To enhance the generalization perfor-
mance, we evaluated performance with added slices. Table 3
indicates that using double-slice input statistically improved
the performance more than with single-slice input, when an
appropriate slice was chosen. Table 6 demonstrates that dou-
ble slice is the optimal number of slices compared to other
numbers of input slices. Moreover, we observed that double
slice shows better performance than single slice when applied
to other AD classification methods. Table 4 illustrates the
result.

Table 2 shows the results of the range from the
amygdala to the posterior end of the PCC. We noticed
that the imaging acquisition environment may hamper
the performance on the ADNI and our independent
datasets. This is because the partial volume effect
(PVE) may affect the small regions to blur the region
of hippocampus (HIP) and entorhinal cortex (EC) [11].
However, PVE occurs due to limited resolution of the
PET imaging system. This implies that the imaging ac-
quisition environment, such as the imaging acquisition

Table 6 ROC diagnostic test with number of input slice using single, double, quadruple, and 3D volume

Number of
input slices

Severance ADNI

ACC SEN SPE AUC p value ACC SEN SPE AUC p value

Double(our method) 94.33 92.11 97.45 0.98 __ 94.82 91.78 97.06 0.98 __

Single 92.20 89.04 95.59 0.96 0.03 92.23 90.13 94.27 0.97 0.04

Quadruple 84.39 91.78 76.47 0.93 0.01 93.85 96.71 91.08 0.98 0.46

3D volume 85.1 90.41 79.41 0.94 0.01 95.14 96.05 94.26 0.98 0.82

ACC accuracy, SEN sensitivity, SPE specificity, AUC area under the curve

Table 5 ROC diagnostic test with
our method and other AD
classification model

Dataset vs Our method Difference between
areas (Standard error)

95% Confidence interval p value

Severance Slice 45 0.0965 (0.0306) 0.0365 to 0.156 0.0016

Slice 48 0.107 (0.0306) 0.0468 to 0.167 0.0005

Slice 45,48 0.0824 (0.0273) 0.0289 to 0.136 0.0025

ADNI Slice 45 0.139 (0.0225) 0.0946 to 0.183 p < 0.0001

Slice 48 0.129 (0.0218) 0.0860 to 0.171 p < 0.0001

Slice 45,48 0.0556 (0.0166) 0.0232 to 0.0881 0.0008
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instrument, hindered performance on datasets. Therefore,
the slice 45 and 48 showed the best performance, which
covers the PCC region. These ranges are less affected
by the PVE, compared to HIP and EC [11].

Although we developed a model with enhanced gen-
eralization performance, there were limitations. First, we
only performed a feasibility test with one external vali-
dation dataset. We need to test using more independent
datasets in further research. Second, we relied on coro-
nal planes for this study because neuropathologic chang-
es of autopsy specimens are assessed using coronal
slices. Examination using axial and sagittal planes is
also needed. Third, the performance comparison should
be performed with variations from 5 mm to 7.5 mm
slice intervals.

Conclusions

We used the proposed GAN-based model with external
validation to classify AD and NC from among selected
[18F] FDG PET/CT images associated with AD neuro-
pathologic changes. The model showed diagnostic per-
formance for an ADNI dataset that was similar to that
with a different dataset from our hospital. When there
are insufficient datasets to train individual deep neural
networks with single-source training datasets, our ap-
proach seems a feasible alternative to classify AD and
NC using datasets from various hospitals.
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